
Directed compact percolation near a wall. II. Cluster length and size

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 3591

(http://iopscience.iop.org/0305-4470/28/13/006)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 00:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A: Math. GM. 28 (1995) 3591-3598. Printed in the UK 
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Abstract. The mean cluster size and leu!& for the unbiassed growth of compact dusters near 
a &y wall are considered. In the case of the cluster size. below pc an exact expression is 
obtained fG1 a seed of arbivary width and distance from the surface. It is found that the critical 
exponent y = 1 for any finite distance from the surface. Crossover to the bulk value y = 2 as 
the distance from the surface tends to infinity is observed. This extends an existing result for 
the exponent p of the percolation probability which changes from a value of 2 in the presence 
of a surface m 1 in the bulk limit. The value A = 3 of the scaling size exponent is unchanged 
by the introduction of the surface. 

The cluster size above pc and the mean cluster length are investigated using differential 
approximants from which we conjecture thal these functions satisfy sand-order differential 
equations. Accepting this mnjecmre gives a mean size exponent the same as below pc and a 
logarithmic divergence of the mean length from both sides of the critical point. The latter result 
together with scaling theory predicts that the exponent has the value 2, the same as for the 
bulk problem. 

, 

1. Introduction 

The compact percolation model [ 2 4 ]  was introduced by Domany and Kinzel [2]. The 
model is a simplification'of the standard percolation model on the directed square lattice in 
that the clusters grow in such a way that ,no holes are formed.~ This allows the cluster shape 
to be paramemzed by two random walk variables and, in the absence of boundaries, all of 
the usual properties of percolation clusters can be calculated analytically. The introduction 
of a wall which restricts  the^ lateral growth-of the cluster makes the analytical calculations 
far more complicated but they can still be c a e d  through in the case of the percolation 
probability [7]. Here we consider the mean cluster size ,and length in the presence 'of a 
dry wall and find an analytic solution for the mean size below the percolation threshold. 
Above the threshold and on both sides of the threshold for the mean length we find that 
the functions appear to satisfy second-order linear differential equations with polynomial 
coefficients. 

Domany and Kinzel [2] calculated the percolation probability and connectedness length 
for the unrestricted dukted square lattice. Other properties such as the mean cluster length 
and size considered here were calculated in the absence of boundaries by Essam [3]. 

The introduction of a dry wall parallel to the symmetry axis of the directed square 
lattice,~thereby restricting the lateral cluster growth, was found [1,7] to change the critical 
exponent of the percolation probability !?om its bulk value p = 1 to B = 2. In an earlier 
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paper [5 ] ,  herein referred to as I, it was shown that this new value of @ was dependent on 
the bulk growth direction being parallel to the wall. Introduction of a bias in the growth 
direction, by allowing different probabilities pu and pd for expansion of the cluster away 
from and towards the wall respectively, caused @ to revert to its bulk value. The details of 
the phase diagram are given in I, where it was also shown that extreme bias towards the 
wall was equivalent to having a wet wall boundary condition. 

In OUT calculations of the mean cluster size and length for the dry-wall problem we have 
found it necessary to restrict attention to the unbiassed case pu = p d  = p. This is where 
new exponents are expected to be found and introduction of a bias will almost certainly 
cause reversion either to the bulk or to the wet wall exponents (which happen to be the 
same for this model). 

The mean cluster size and length satisfy linear recurrence relations similar to those for 
the percolation probability except for the occurrence of additional inhomogeneous terms. 
For the percolation probabilty it was sufficient to impose the boundary condition that it 
remain finite on moving the seed infinitely far from the wall. Here the known bulk values 
for the cluster size and length must result in this limit. In the case of the mean size an 
exact solution of these relations has been found for p < pc resulting in an exponent y = 2 
compared with y = 1 for the bulk. The scaling relation A = jJ + y for the scaling size 
exponent gives A = 3, the same as for the bulk. The exponent is the same for all seed 
widths and distances from the wall. 

In the case of the mean cluster size for p > pc  and mean cluster length on both sides of 
pc no closed-form expressions have been obtained. The corresponding properties in the bulk 
are simple rational expressions but introduction of the wall appears to make these functions 
far less trivial. We have therefore used recurrence relations to derive high- and low-density 
series expansions to high order for tbe case of a seed of width one adjacent to the wall. 
Using the method of differential approximants, recently reviewed by one of us [6 ] ,  we have 
discovered linear recurrence relations satisfied by the series coefficients which appear to 
be exact. The order of these relations depends on the function, but the coefficients are 
always polynomials of at most degree two. The corresponding second-order differential 
equations have singular points, one of which is the critical point and the corresponding 
indices determine the critical exponents. It is found that the mean size diverges as pc  is 
approached from above with exponent y = 1, the same as below pc,  but there is a confluent 
analytic term which vanishes with exponent 3. The mean length diverges logarithmically 
from both sides of pc and therefore its critical exponent r = 0. 

The value 5 = 0, although not rigorously obtained, is also supported by scaling theory. 
Applying this theory to compact percolation [31 it was shown that the parallel scaling length 
exponent is given by VI ,  = t + @. Thus with r = 0 and @ = 2 we obtain V I ,  = 2 which 
is the same as for the bulk lattice [2]. This result is similar in nature to the result that the 
scaling size exponent does not change on introducing the wall. We have established the 
latter result rigorously as stated above. 

2. The mean cluster sue near a dry wall 

The general compact percolation model in the presence of a wall was described in I, where 
a diagram of a typical cluster near a dry wall may be found. We consider a restricted 
directed square lattice whose sites are the points of the t - x plane such that t 2 0, x 2 0 
and t + x is even. The cluster grows from a seed of m atoms which occupy contiguous 
sites in the column f = 0. The position of the seed will be specified by its centre-of-mass 
co-ordinate y .  Thus the occupied sites have x = n, n + 2, n + 4, . . . , n + Z(m - 1) where 
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n = y - m + 1 > 0 and hence the least value of y is m - 1 which corresponds to the seed 
being adjacent to the wall. The random growth takes place by one column at each time 
step. A site in column t is occupied with probability 1 if both its pred&ssors in column 
t - 1 are occupied and with probability p if just one of its two predecessors is occupied; 
otherwise the site wilI be unoccupied. If there is only one atom in coIumn t - 1 the cluster 
terminates with probability (1 - p)'. For p below the percolation threshold pc, termination 
at some stage will occur with probability 1. The size of a cluster which terminates will be 
defined as the total number of atoms it contains including the seed atoms. 

2.1. General difference equations 

The mean size of finite clusters with seed of width m and centre of mass y will be denoted 
by Sm,y@). The functional dependence on p will be dropped in situations where a fixed 
value of p is considered., A recurrence relation for the mean size may be obtained by 
a simple extension of the argument in section 3 of I for the termination probability. By 
translational invariance in t ,  any finite~cluster C ,  with at least one growth stage, may be 
constructed by concatenating its seed together with a cluster C' having one less growth 
stage. The seed of C' is in column t = 1 and i ts  width and centre of mass will be denoted 
by m' and y' respectively. If y > m, so that the seed is not adjacent to the wall, then the 
possibilities for (m', y') are (m, y +  l), (m, y -  I), (m+ 1, y )  apd (m- 1, y) with respective 
probabilities a = b = p(1 - p ) ,  c = p z ,  and d = (1 - P ) ~ .  In all cases C' has m more 
atoms than C. This leads to the recurrence relation 

(1) 
= 1 - Pm.y(p) is the probability that C is finite, i.e. the complement of 

is necessary above pc  

3m.y  = a%,y+i +b%,y-I + C%+l,y fdjm-1.y +,mQm.y. for y 2 m > 1 

where 
the percolation probability Pm.y(p) determined in I. The factor 
since only finite clusters are counted. Also for p z pc it is the unnormalized mean sue 

- 
s m , y ~ =  Sm.yQm.y  (2) 

which appears in the relation. Below pc ,  
(1) valid for m = 1 we have imposed the boundary condition 

= 1 and the bar may be dropped. To make 

say = 0 for y 2 m  - 1. (3) 

%.,,-I = pj"., + (1 - P).%-I.~-I + mQm.m-l 

If the seed is adjacent to the wall, i.e. y = m - 1, only two of the above possibilities occur 
ind hence 

(4) 

Finally in the limit y + CO the bulk mean size, which has been calculated in [4], must 
result as 

m 2 1. 

lim Sm,y = Sm(bulk) 
y-tm 

where 

m 1 m - 1  
(5) 



3594 J W Essam and A J G u m "  

Equation (4) may be included as the case y = m - 1 of (1) provided we impose the 
simpler boundary condition 

2.2. Exact solution for the low-density region 

In I a number of solutions of the homogeneous part of (1) were given including 
m ( p j ( 1 -  p))Y-". This solution is appropriate for p < pc since it vanishes as y + CO and 
may therefore be added to S,(bulk), which is a particular solution of the inhomogeneous 
equation, in an attempt to include the effect of the wall in the low-density region. Hence 

S,,y = &(bulk) + A m  (1 - _" p ) y - m .  

The modified function still satisfies (3)  so it remains to satisfy (7).  It turns out that this 
equation may be satisfied for all m and y by an appropriate choice of A which results in 
the required solution 

Notice that, for finite y. on collecting the terms on the right of (9) over the common 
denominator ( 1  - 2p)', the numerator has a simple zero at p = pc  and hence the 
pole of multiplicity two in the bulk mean size is reduced to a simple pole. This 
crossover phenomenon parallels that observed by Bidaux and Privman [ 11 for the percolation 
probability. Here y = 1 for any finite distance of the seed from the wall and y = 2 in the 
bulk limit. 

For the case of a source of width 1 adjacent to the wall (9) reduces to the simple result 

2.3. Differential approximant for the high-density region 

In the region p z pc  we have been unable to find a closed solution for the mean size. Even 
the case m = 1 ,  y = 0, which had such a simple form in the low-density region, appears to 
be a much more complicated function but still having a simpze pole at p = pc as we show 
below. Above the critical probability it is convenient to work with the variable q = 1 - p 
and the unnormalized mean size in this region, .?m.y(q), will be considered to be a function 
of q. 

We have used the recurrence relation ( 1 )  together with the boundary conditions (3) 
and (7)  to obtain the coefficients S; in the expansion of &(q), in powers of q .  The first 
50 of these are given in table 1 .  

Using the method of differential approximants [6] we have found the following eighth- 
order recurrence relation: 
( n + n 2 ) S ; + ( 1 2 -  1 4 n - 4 n  2 -  )Sn-, - ( 2 7 6 -  170n+10n2)S;-2 

+(1764-888n+92n2)S;-3 - (5292-2321n+239n  2 -  )Sn-4 

+(3840 - 1224n + 9 6 r ~ ~ ) S ; - ~  - (768 - 224n + 16n2)S;-, = 0 

+(8640 - 3370n + 320nZ)S;-5 - (7920 - 2780n + 240nZ)S;+ 

(11) 
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Table 1. Coefficients in the series eXQatISiOnS of the mean cluster length and si.&. Superscripts 
+ and - denote expansion in powers of p and g. respectively. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

1 
5 

15 
~36 
80 

169 
351 
714 

1454 
291 1 
5913 

11676 
24004 
46077 
98999 

174598 
432642 
564731 

2232601 
362012 

16189948 
-26593263 
I74099539 

-536319586 
2400457482 

-8948736489 
36950460701 

-146432266580 
598046374572 

-2A28248089915 
9971731818967 

-41046280290754 
17001641751 1178 

-706983201784077 
2953533400889737 

- 12387332620785604 
52157739595768652 

-22040867041638423 1 
93464734687 1848563 

-3976395591359356878 
16970271504638516166 

-72640332507993679825 
311815104049285592989 

-1342115178248119879824 
5791663454007644781560 

-2505465497632297424089 1 

1 
2 
3 
6 
9 

20 
26 
76 
55 

364 
-166 
2484 

-4851 

-72432 
288912, 

-1017690 
3903064 

-14609756 
56335208 

-217435185 
851023056 

-3351972840 
13322388384 

-53310340434 
214834999656 

-871142160820 
3553515113624 

-1457494345489 I 
60089962052040 

-248941489436604, 
10360287M08 104 

-433021327148160d 
18172134285471392 

-76553535622943 120 

-1373173925444302666 
5844798741884835616 

-2495520971 3989 173648 

9000 

32m1432366676256 

1068650710?8472444480 
-458915807962198781814 
1976045229848720391376 

-8530511571395729344040 
36916349882276312070704 

-160133503456191982607681 
~6961817047675864598854~ 

13 
26 
46 
76. 

122 
193 
309 
496 
830 

1366 
2468 
3970 
8356 

10775 
35227 
9280 

221846 
.~ 7344765 

2212511 
-6716082 
29204664 

-107460436 
43431 1674 

- 1697451 846 
6819637388 

-27324761058 
1 10704352472 

-450235182842 
1843371746624 

-7583418314021 
31359356687263 

- 130269792686128 
543557877573910 

-22773709040 14227 
9579078148020853 

-40440630589263970 
171330935250807560 

-728280149776067223 
3 105524856214947297 

, . -13282463760765322528 

-?A5044416740421 I63617 
105671 10~40783424874651 

-4568272373796435661 454 

~69n8250277Ss56n82 

47 108642315857722136827911 -3033191096134059989064724 19796355221796309298772 
48 -472163365715479997585166 13242682030797835674099576 -85982909628630322852352 
49 2056493925139861465289014 -579316139000W077033802820 374275637842510127770574 
50 - 89756630376 10753 1974 14789 2539 1324 1702633 I88283664704 - I632619098498842327897 I74 
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which, together with S;, . . . , S;, generates all the coefficients in table 1 .  Accepting the 
correctness of this relation for d l  d u e s  of n, it follows that Sl ,o(q)  satisfies the following 
second-order differential equation: 

q ( 1 - q ) 2 ( 1 - 2 4 ) 2  (1 + 4 q  - 4 4  )si&?) 

J W Essam and A J Guttmann 

2 -,, 

+ 2 ( 1 - q )  ( 1  - 2 q )  ( 1 - 8 q + l l q 2 + 1 2 q 3 - 1 2 q 4 ) S ~ , o ( q )  

4-6 ( - 1  + 2 q  - 7 q 2 +  12q3 -4q4)  &(q) 

(12) 

The regular singular points of this equation and their corresponding exponents are listed 

- 2 - 2 q  - 6 q 2  + 4q3 + 30q4 - 48 q5 + 24q6 - 
(1 - d2 

in table 2. 

Table 2. Singular points and exponents for the differential equations satisfied by the mean 
clustex size and lengih. A positive exponent C Q I ~ W Q O ~ ~ S  to an algebraically diverging solution 
and a zero exponent corresponds to logarilhmic divergence. In the case of confluent singularities 
two mponenls are given. 

q=m I*& 
q = o  q = ;  q = 1  4=-* 

Mean s i z e  1 1 -3 4 3 -4 -2 
Mean length 0 0 3 3 -4 -1 -1 

The exponents 1 and -3 at the critical point qc = 4 suggest that the leading asymptotic 
form of Sl.o(q) is 

A- 
S,.o(q) &z - 1 - 2q  

with a possible confluent singularity ( 1  - 24)310g(l - 2q). Substituting SI,&) = 
A-(q)/(l - 2q) in (12) removes the leading singularity and gives a differential equation 
for A-(q) which may be used to find the amplitude. The value of A-(q) and its derivative 
at some small value of q may be accurately obtained from the series expansion of &o(q) 
and integrating the differential equation numerically from this point to qc determines the 
amplitude A- = A-(q,) = 2.895 3042.. . which is considerably higher than the low-density 
amplitude of 0.5. The value of A- may also be confirmed using Pad6 approximants. 

3. Differential approximant for the mean cluster length 

The normalized mean cluster length for the bulk problem was shown in [3] to be the 
following simple function: 

m 
t , (b~lk)  = - 

I1 - 2Pl 
(14) 

which is valid above and below p.. The cluster length is defined to be the number of atoms 
in the shortest path from the seed to the terminal point (one more than the number of growth 
stages). 

The recurrence relations satisfied by the unnormalized mean cluster length L,,,(p) in 
the presence of a dry wall are the same as those for the mean size, except that the factor m 
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in ( 1 )  and (4) is replaced by unity. This apparent simplification in fact makes the problem 
more complicated and we have been unable to obtain a closed form solution even below pc. 

These modified recurrence relations have therefore been used to obtain the coefficients 
L: and L; in the series expansions of Zl.0 in powers of p and q respectively. The first 50 
terms are listed in table 1 .  

We find that the Coefficients L: at least as far as L:, are generated from L l . .  . L: by 
the following recurrence relation: 
( 9 + 6 n + n 2 ) L : - ( 1 8 + l l n - n  2 +  )Ln- ,+(6+24n-14n 2 +  )Ln-2 

(15) +(48 - 68n + 20n2)L:-;_, - 8(9 - 6n + n 2 )Ln-4 + - 0  - 
which implies that Ll&) satisfies the following differential equation: 

p2(1  - p ) ( l  - 2pXl + 4 p  - 4p )L, ,o(P)  + ~ ( 7  - 8~ - 4 6 ~ '  + 72p3 - 24p4)L',,o(p) 2 N 

+(9 - 28p - 2p2 + 24p3 - 8p4)Ll,0(p) = 9 - 12p + 12~'. (16) 
The coefficients L; satisfy the difference equation 

n2L; + (24 - 17n - 2n2)L;-, - (264 - 159n + 14n )Ln-2 2 -  

+(1080-563n+64n2)L;-3 -(2184-  lOOln+ 111n2)L;-, 

+(2352 - 960n + 98n2)L;-, - (1296 - 476n + 44n )Ln-6 2 -  

+(288 - 96n + 8n2)L;-, = 0 (17) 
resulting in the differential equation for Ll,o(q). namely 

2 - n  q ( 1 - 2 q )  ( I - d 2  ( 1 + 4 q - 4 q ) L , . o ( q )  

+ ( l - q )  (I -20q+26q2+24q3-24q4)~ ,o (q)  

+ ( 5 + 8 q - 2 2 q 2 - 8 q 3 + 8 q 4 ) L i , o ( q )  

(18) 
1 + 2 q  - 21 q 2  + 2oq3 - 12q4 

( 1  - d2 
- - 

Notice that replacing q by 1 - p in the left-hand side of this equation reproduces the left- 
hand side of the corresponding low-density differential equation (16). but this is not the 
case for the right-hand side. This means that if equation (18) has a singular point at q = qs 
then equation (16) will have a singular point at p = 1 - qs with the same exponents. In 
table 2 we therefore list only the exponents for the singular points in the q variable. The 
zero exponent corresponding to the critical point suggests the following asymptotic form: 

' ~ 1 . 0 ( p ) ~ B * l o g I l - 2 q I + C *  (19) 
where the superscripts + and - refer to the approach from above and below qc. respectively. 
The constants have been estimated by solving the differential equation and curve fitting close 
to the critical point which yields the following values: 

B-  = B' = -2.547 = 811-1 C- = 4.097 C+ -3.901 C- - 8 .  (20) 
The value 8lrr for the B's and the integer value 8 for the difference of the C's fit the data 
to within our estimated accuracy. 

A similar analysis of &(p)  for other small values of m and y still yields a second- 
order differential equation but with coefficients of higher degree. The logarithmic singularity 
at pc  also occurs for these values. 
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The fact that the same differential operator arises for both the high- and low-density 
mean cluster length lead us to ask whether the same is true for the mean size. Substituting 
4 = 1 - p  in the left-hand side of (12) and then substituting the closed form (10) of &,&I) 
into the result shows that it does indeed satisfy the differential equation 

P z ( l  - P)(l - 2P)'(1+4P - 4 P 2 ) s [ o ( P )  

-2p(l- 2pN-4 + 2p + 25pz - 36p3 + 12p4)Si,0(p) 

+6(2 - 8 p  + 5pZ + 4p3 - 4p4)Sl,o(p) 

= 12 - 28p + 22p2 - 8p4. 

Of course, since Sl.o(p) is a rational function it also satisfies a simpler first-order 
homogeneous differential equation. 

Finally we note that the denominator (1 - 4)' on the right-hand side of (12) does not 
occur in the differential equation for the normalized mean size Sl,o(p) which is related to 
%o(q) by 

However, the symmetry of the left-hand side of the equation about the critical point is lost 
by this substitution. Similar remarks apply to the normalized mean length. 
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